Topological Quantum

 ChemistryJennifer Cano
Princeton University

Bradlyn et al, Nature 547, 298-305 (ArXiv:1703.02050)
Vergniory et al, Phys Rev E 96, 023310 (ArXiv:1706.08529)
Elcoro et al, J. Appl. Cryst. 50, 1457 (ArXiv:1706.09272),
Cano et al (ArXiv:1709.01935),
Bradlyn et al (ArXiv:1709.01937)
ICMT workshop

Collaborators

Barry Bradlyn (Princeton)

Zhijun Wang (Princeton)

Maia Garcia Vergniory (DIPC, EHU)

Claudia Felser (Max Planck)

Mois Aroyo (EHU)

Luis Elcoro (EHU)

Andrei Bernevig (Princeton)

Topological insulators

Mirror Chern Insulator

Topological Insulators and Topological Semimetals

Weyl and Dirac fermions

Hourglass fermions

Piecewise classification of topological (crystalline) insulators

Open questions:

How do we know when the classification is complete?

How can we find topological materials?

200000 materials in ICSD database:
100 time reversal topological insulators
10 mirror Chern insulators
15 Weyl semimetals
15 Dirac semimetals
3 Non-Symmorphic topological insulators

Group
theory
Graph theory

We propose a classification that captures all crystal symmetries and has predictive power

Recall: a space group is a set of symmetries that defines a crystal structure in 3D

Consists of:

- unit lattice translations (Z^{3})
- point group operations (rotations, reflections)
- non-symmorphic (screw, glide)

230 space groups

Given a space group, how to define an atomic limit?
Consider one lattice site:

Site-symmetry group: $G_{\mathbf{q}}$, leaves \mathbf{q} invariant $\quad C_{3}, m_{y}$

Orbitals at \mathbf{q} transform under a rep, ρ, of G_{q}

Elements of space group $g \notin \mathrm{G}_{\mathrm{q}}$ move sites in an orbit "Wyckoff position"
Each Wyckoff position and irrep of G_{q} define an atomic limit

The orbital symmetry and Wyckoff position determine the irreps that at high-symmetry points in the Brillouin zone

1. Orbitals at \mathbf{q} described by ρ, a representation of G_{q}

2. ρ induces a rep. of the full space group

$$
\rho \uparrow G \quad \text { "band representation" }
$$

determines how orbitals transform into each other under full space group
3. Band representation restricts to little group at $\mathbf{k}, \mathrm{G}_{\mathbf{k}}$

$$
(\rho \uparrow G) \downarrow G_{\mathbf{k}} \quad \text { determines irreps that appear at } \mathbf{k}
$$

Real space: orbitals and symmetries

Momentum space: k.p
Irreps/degeneracies uniquely determined

Enumerating all atomic limit band structures serves as a classification..... What does it mean to consider ALL atomic limits?

Band representations can decompose

Elementary band representations are those that cannot be decomposed

Distributive:

$$
\left(\rho_{1} \oplus \rho_{2}\right) \uparrow G-\left(\rho_{1} \uparrow G\right) \oplus\left(\rho_{2} \uparrow G\right)
$$

Transitive:

$$
(\rho \uparrow H) \uparrow G=\rho \uparrow G, \quad I I \subset G
$$

Zak PRL 1980

We have enumerated all elementary band representations and their irreps at high-symmetry points

JC et al., ArXiv:1709.01935

Elementary band representations are special

Bands in an elementary band representation might be connected or disconnected
If disconnected, some or all bands are topological

Proof by contradiction:
if they could decompose into atomic limit
bands, then would not have been elementary
Bradlyn, JC et al., Nature 547, 298-305;
JC et al., ArXiv:1709.01935

Completes research program by Zak and Michel from 1999, 2000, 2001

Real space: orbitals and symmetries

Momentum space: k.p
Irreps/degeneracies uniquely determined

Only based on symmetry — haven't inputted energetics!

So far, we have only used symmetry, not energetics

Energy ordering can change band connectivity

Symmetry enforced semi-metal

Topological insulator

Want to determine connectivity for each set of atomic limit bands

"Little group" of $\mathrm{k}_{0}: \quad \mathcal{G} \mathbf{k}_{0}=\mathbf{k}_{0}$

Eigenstates transform under little group irreps

Irreps at k_{0} determine irreps along lines emanating from k_{0}

$$
\left.\begin{array}{l}
\Delta_{1} \rightarrow \ell_{1} \\
\Delta_{2} \rightarrow \ell_{1} \oplus \ell_{2} \\
\Delta_{3} \rightarrow \ell_{2}
\end{array}\right\} \quad \begin{gathered}
\\
\text { Compatibility relations } \\
\text { between points and lines }
\end{gathered}
$$

Compatibility relations determine connectivity between different k

Allowed band structures:

- Compatibility between points and lines
- One label per line segment

Enumerating all possible band connectivities is a huge problem!

230 space groups

Each space group has several (1 to 4) maximal Wyckoff positions

Symmetry group of each position has several irreps

For each combination: permute irreps at each point and check compatibility

To enumerate all allowed band connectivities: map to graph theory

MGV, JC, et al., Phys. Rev. E 96, 023310 (2017) BB, JC, arXiv:1709.01937

Graph is represented by a matrix

Example output: graphene

Semi-metallic phase

Topological phase

Algorithm enumerates topological insulators and symmetry-protected semi-metals

We computed connectivity for all 10,000 elementary band representations

How to use this information?

1. List of topological trivial invariants for each space group

2. List of space groups/orbitals that are necessarily topological when insulating at partial filling

Theory of band reps is both a classification and a predictive scheme

Finding new topological materials

EBR theory classifies all known topological insulators

Disconnected elementary band representations

Composite band representations with band inversion

Finite (long!) list; cross-reference ICSD
Expedite search by:

1. orbitals at E_{F}
2. electron counting

Symmetry-protected semi-metals: search within connected EBRs

Layered square nets:

$-A B X_{2}$: A=rare earth; $B=C u, A g ; X=B i, A s, S b, P$ ABX: A=rare earth; B=Si, Ge, Sn, Pb; X=Os, S, Se, Te

Layered distorted square nets: LaSbTe, $\mathrm{SrZnSb}_{2}, \mathrm{AAgX}_{2}, \mathrm{~A}=\mathrm{RE}, \mathrm{X}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$

Weak TI: LaSbTe

Topological insulators and semi-metals in SG 64 (buckled honeycomb layers)

Strained PbO_{2}

Semi-metal; topological bands -3.5 eV
Uniaxial strain opens topological gap near E_{F}

Summary

We computed all elementary (trivial) band representations and their connectivities $\boldsymbol{\rightarrow}$ classifies all TCI phases

```
Chemistry
```

Cross-referencing the list of disconnected(connected) elementary band reps against material databases yields topological insulators(semimetals)

Future directions

How to detect topological phases that do not have surface states?
Can we apply to many-body systems?
How does the classification change with interactions?

