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Topological Insulators and Topological Semimetals

Topological insulators

Weyl and Dirac fermions Hourglass fermions

Kane Hasan RMP

Bernevig

Mirror Chern Insulator
Hsieh et al

Wang et alNeupane et al
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200000 materials in ICSD database: 
100 time reversal topological insulators

10 mirror Chern insulators
15 Weyl semimetals 
15 Dirac semimetals

3 Non-Symmorphic topological insulators

Piecewise classification of topological (crystalline) insulators

How do we know when the classification is complete?

How can we find topological materials?

Set of measure zero… 
Are topological materials that esoteric?

We propose a classification that captures all 
crystal symmetries and has predictive power

Open questions:

?

Z2

Z
Z4Z

Chemistry

Group 
theory

Graph 
theory



Recall: a space group is a set of symmetries that defines a 
crystal structure in 3D

230 space groups

Consists of: 
• unit lattice translations (Z3)
• point group operations (rotations, reflections)
• non-symmorphic (screw, glide)

Image: 1605.06824 Ma et al



Site-symmetry group: Gq, leaves q invariant

Orbitals at q transform under a rep, 𝝆, of Gq

Elements of space group g ∉ Gq move sites in an orbit “Wyckoff position”  

q

C3, my

s pz px, py

C6

C6

Consider one lattice site:

Given a space group, how to define an atomic limit?

Each Wyckoff position and irrep of Gq define an atomic limit



The orbital symmetry and Wyckoff position determine the irreps that 
at high-symmetry points in the Brillouin zone 

q

1. Orbitals at q described by 𝝆, 
a representation of Gq

s pz px, py

𝝆 describes an orbital

⇢ " G

2. 𝝆 induces a rep. of the full space group

determines how orbitals transform into each other under full space group

“band representation”

3. Band representation restricts to little group at k, Gk 

(⇢ " G) # Gk

Topological   insulatorTopological semi-metal

determines irreps that appear at k



Topological   insulatorTopological semi-metal

Momentum	space:	k.p	
Irreps/degeneracies	uniquely	determined

Real	space:	orbitals	and	symmetries



Enumerating all atomic limit band structures serves as a classification….. 
What does it mean to consider ALL atomic limits?

Γ M

{

{

⇢1 " S

⇢2 " S }(⇢1�⇢2)"S

Band representations can decompose

Transitive:

,

Distributive:

Elementary band representations are 
those that cannot be decomposed Zak PRL 1980

We have enumerated all elementary band 
representations and their irreps at high-symmetry points 

Bradlyn, JC, et al., Nature 547, 298–305; 
JC et al., ArXiv:1709.01935



Elementary band representations are special

Bands in an elementary band representation might be connected or disconnected


If disconnected, some or all bands are topological

Γ M

{

{

⇢1 " S

⇢2 " S }⇢ " S
Proof by contradiction: 


if they could decompose into atomic limit 
bands, then would not have been elementary

Bradlyn, JC et al., Nature 547, 298–305; 
JC et al., ArXiv:1709.01935

Completes research program by Zak and Michel from 1999, 2000, 2001

EBR



Topological   insulatorTopological semi-metal

Momentum	space:	k.p	
Irreps/degeneracies	uniquely	determined

Real	space:	orbitals	and	symmetries

Only	based	on	symmetry	—	haven’t	inputted	energetics!

Topological   insulatorTopological semi-metal
Topological   insulatorTopological semi-metal

Topological   insulatorTopological semi-metal

Topological   insulatorTopological semi-metal

Topological   insulatorTopological semi-metal

Topological   insulatorTopological semi-metal

Topological   insulatorTopological semi-metal

or or

…



Energy	ordering	can	change	band	connectivity

Symmetry	enforced	semi-metal Topological	insulator Topological   insulatorTopological semi-metal
Topological   insulatorTopological semi-metal

So	far,	we	have	only	used	symmetry,	not	energetics



Eigenstates transform under little group irreps

“Little group” of k0: Gk0 = k0

�1

�2

�3

Irreps at k0 determine irreps along lines emanating from k0

`1

`2

`1

`2

�1 ! `1

�2 ! `1 � `2

�3 ! `2 } Compatibility relations 
between points and lines

k0

Want to determine connectivity for each set of atomic limit bands



Compatibility relations determine connectivity between different k

Allowed band structures:

• Compatibility between points and lines

• One label per line segment
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
2

has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb

1

,qb
2

} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q

b
1

and q

b
2

; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
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where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C
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z ⌦ e�i 2⇡

3 �
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where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 2. Reciprocal lattice vectors and high symmetry points of the hexagonal lattice.

In Figure 1b we show pictorially the location of these Wycko↵ positions within the standard hexagonal lattice.
Before moving on to construct the elementary band representations induced from these Wycko↵ positions, we must

also establish a convention for the Brillouin zone. We take as our reciprocal lattice vectors

g

1

= 2⇡

 p
3

3
x̂ + ŷ

!
(42)

g

2

= 2⇡

 p
3

3
x̂ � ŷ

!
, (43)

which are shown in Fig 2. We will be primarily interested in the little group representations at three high symmetry
points in the Brillouin zone. The first is the � point, with coordinates (00). The little group G

�

is, as always, the
full point group C

6v. Next, there are the three time-reversal invariant M points, which we denote M , M 0 and M 00.
These have coordinates ( 1

2

0), ( 1

2

1

2

) and (0 1

2

) respectively. For the remainder of this appendix we need only concern
ourselves with the first of these, and so we will refer to it unambiguously as “the” M point; the others are related to
it by C

3z symmetry. It has little group GM , which is isomorphic to C
2v and generated by C

2z and C
3zm

1

¯

1

. Finally,
there are the K and K 0 points – the focus of most topological investigations in graphene. We will focus here primarily
on the K point which has coordinates ( 1

3

2

3

); the K 0 point can be obtained by a ⇡/3 rotation). The little group GK is
isomorphic to C

3v and is generated by C
3z and C

2zm
1

¯

1

. The high symmetry points are shown in Fig 2.

B. Elementary band representations

We are now in a position to compute the elementary band representations induced from the maximal Wycko↵
positions in the honeycomb lattice. We will consider each Wycko↵ position in turn, starting with the 1a position.
To aid in this task, we reproduce character tables for the single and double-valued representations of C

6v, C
3v and

C
2v in Tables IV, V and VI, respectively. We label site-symmetry group representations by their Wycko↵ position

label. We denote that a representation is a double-valued representations by an overbar. Finally, we label little group
representations by their k-point label. For symmorphic groups, such as SG 183, the little group, Gk, of each k point
is isomorphic to one of the site-symmetry groups. Because of this, we will indicate whether a given representation
refers to a site-symmetry or little group by the choice of symbol, however we will label the representations for all
isomorphic groups in the same order.

1. Wycko↵ position 1a

The stabilizer group of Wycko↵ position 1a is Gqa

1
⌘ C

6v, whose irreps are shown in Table IV. The induction
procedure is quite simple: given an irrep ⇢ of C

6v with character �⇢, the characters �k
G in the induced representation

⇢ " G are given simply by

�k
G(h) = �⇢(h) (44)



Enumerating all possible band connectivities is a huge problem!

230 space groups

Each space group has several (1 to 4) maximal Wyckoff positions 

Symmetry group of each position has several irreps

For each combination: permute irreps at each 
point and check compatibility



To enumerate all allowed band connectivities: map to graph theory
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This matrices di↵er only in their K�⇤ and K�T blocks. As a consistency check, we verify that the sum of elements in
the row or column labelled by ⇢ is equal to d(⇢) from Table XIV; thus, the degree matrix D satisfies Dij = �ij
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indicating that the graph described by the matrix A
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has a single connected component consisting of all the nodes in
the graph. On the other hand, we find that the null space of L
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b
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" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
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,qb
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} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q
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and q
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; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
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where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as
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where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 2. Reciprocal lattice vectors and high symmetry points of the hexagonal lattice.

In Figure 1b we show pictorially the location of these Wycko↵ positions within the standard hexagonal lattice.
Before moving on to construct the elementary band representations induced from these Wycko↵ positions, we must

also establish a convention for the Brillouin zone. We take as our reciprocal lattice vectors

g
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3

3
x̂ + ŷ

!
(42)

g

2

= 2⇡

 p
3

3
x̂ � ŷ

!
, (43)

which are shown in Fig 2. We will be primarily interested in the little group representations at three high symmetry
points in the Brillouin zone. The first is the � point, with coordinates (00). The little group G

�

is, as always, the
full point group C

6v. Next, there are the three time-reversal invariant M points, which we denote M , M 0 and M 00.
These have coordinates ( 1

2

0), ( 1

2

1

2

) and (0 1

2

) respectively. For the remainder of this appendix we need only concern
ourselves with the first of these, and so we will refer to it unambiguously as “the” M point; the others are related to
it by C

3z symmetry. It has little group GM , which is isomorphic to C
2v and generated by C

2z and C
3zm

1

¯

1

. Finally,
there are the K and K 0 points – the focus of most topological investigations in graphene. We will focus here primarily
on the K point which has coordinates ( 1

3

2

3

); the K 0 point can be obtained by a ⇡/3 rotation). The little group GK is
isomorphic to C

3v and is generated by C
3z and C

2zm
1

¯

1

. The high symmetry points are shown in Fig 2.

B. Elementary band representations

We are now in a position to compute the elementary band representations induced from the maximal Wycko↵
positions in the honeycomb lattice. We will consider each Wycko↵ position in turn, starting with the 1a position.
To aid in this task, we reproduce character tables for the single and double-valued representations of C

6v, C
3v and

C
2v in Tables IV, V and VI, respectively. We label site-symmetry group representations by their Wycko↵ position

label. We denote that a representation is a double-valued representations by an overbar. Finally, we label little group
representations by their k-point label. For symmorphic groups, such as SG 183, the little group, Gk, of each k point
is isomorphic to one of the site-symmetry groups. Because of this, we will indicate whether a given representation
refers to a site-symmetry or little group by the choice of symbol, however we will label the representations for all
isomorphic groups in the same order.

1. Wycko↵ position 1a

The stabilizer group of Wycko↵ position 1a is Gqa

1
⌘ C

6v, whose irreps are shown in Table IV. The induction
procedure is quite simple: given an irrep ⇢ of C

6v with character �⇢, the characters �k
G in the induced representation

⇢ " G are given simply by

�k
G(h) = �⇢(h) (44)

Semi-metallic phase Topological phase

Algorithm enumerates topological insulators and symmetry-protected semi-metals



We computed connectivity for all 10,000 elementary band representations

Theory of band reps is both a classification and a predictive scheme

How to use this information?

1. List of topological trivial 
invariants for each space group ?

2. List of space groups/orbitals that are necessarily topological when 
insulating at partial filling



Finding new topological materials

EBR theory classifies all known topological insulators

Disconnected elementary 
band representations

Composite band representations 
with band inversion

s

sp

p

SOC

Finite (long!) list; cross-reference ICSD
Expedite search by:

1. orbitals at EF
2. electron counting

Symmetry-protected semi-metals: search within connected EBRs



Layered square nets: 
ABX2: A=rare earth; B=Cu, Ag; X=Bi, As, Sb, P

ABX: A=rare earth; B=Si, Ge, Sn, Pb; X=Os, S, Se, Te 

line node SOC topo. gap

~ 50 candidate materials ~ 250 candidate materials



Weak TI: LaSbTe

Layered distorted square nets: LaSbTe, 
SrZnSb2, AAgX2, A=RE, X=P, As, Sb, Bi

Weak TI: SrZnSb2



IrTe2 (Type II Weyl) CNb2 (Small gap, weak TI)

Topological insulators and semi-metals in SG 64 
(buckled honeycomb layers)



Strained PbO2

Semi-metal; topological bands -3.5eV Uniaxial strain opens topological gap near EF

Strain

(pic: ICSD)



Summary

We computed all elementary (trivial) band representations and their 
connectivities ➡ classifies all TCI phases

Cross-referencing the list of disconnected(connected) elementary band reps 
against material databases yields topological insulators(semimetals)

Graph 
theory

Chemistry

Group 
theory

Future directions

How to detect topological phases that do not have surface states?

Can we apply to many-body systems? 
How does the classification change with interactions?

ArXiv:1703.02050, 1706.08529, 
1706.09272, 1709.01935, 

1709.01937


