Topological Quantum Chemistry

Jennifer Cano Princeton University

Bradlyn et al, *Nature* 547, 298–305 (ArXiv:1703.02050) Vergniory et al, Phys Rev E 96, 023310 (ArXiv:1706.08529) Elcoro et al, J. Appl. Cryst. 50, 1457 (ArXiv:1706.09272), Cano et al (ArXiv:1709.01935), Bradlyn et al (ArXiv:1709.01937)

ICMT workshop

Collaborators

Barry Bradlyn (Princeton)

Zhijun Wang (Princeton)

Maia Garcia Vergniory (DIPC, EHU)

Claudia Felser (Max Planck)

Mois Aroyo (EHU)

Luis Elcoro (EHU)

Andrei Bernevig (Princeton)

Topological insulators

Mirror Chern Insulator

Topological Insulators and Topological Semimetals

Weyl and Dirac fermions

Hourglass fermions

Piecewise classification of topological (crystalline) insulators

Open questions:

How do we know when the classification is complete?

How can we find topological materials?

200000 materials in ICSD database:

100 time reversal topological insulators 10 mirror Chern insulators 15 Weyl semimetals 15 Dirac semimetals 3 Non-Symmorphic topological insulators

Set of measure zero... Are topological materials that esoteric?

We propose a classification that captures all crystal symmetries and has predictive power

Recall: a space group is a set of symmetries that defines a crystal structure in 3D

Consists of:

- unit lattice translations (Z³)
- point group operations (rotations, reflections)
- non-symmorphic (screw, glide)

230 space groups

Elements of space group $g \notin G_q$ move sites in an orbit "Wyckoff position" C_6

S

Each Wyckoff position and irrep of Gq define an atomic limit

The orbital symmetry and Wyckoff position determine the irreps that at high-symmetry points in the Brillouin zone

1. Orbitals at **q** described by ρ , a representation of G_q

2. ρ induces a rep. of the full space group

 $\rho \uparrow G$ "band representation"

determines how orbitals transform into each other under full space group

3. Band representation restricts to little group at k, Gk

 $(
ho\uparrow G)\downarrow G_{\mathbf{k}}$ determines irreps that appear at ${f k}$

Real space: orbitals and symmetries

Momentum space: k.p Irreps/degeneracies uniquely determined Enumerating all atomic limit band structures serves as a classification..... What does it mean to consider ALL atomic limits?

Band representations can decompose

Distributive:

$$(\rho_1 \oplus \rho_2) \uparrow G = (\rho_1 \uparrow G) \oplus (\rho_2 \uparrow G)$$

Transitive:

$$(
ho \uparrow H) \uparrow G =
ho \uparrow G, \ \ H \subset G.$$

Elementary band representations are those that cannot be decomposed

Zak PRL 1980

We have enumerated all elementary band representations and their irreps at high-symmetry points

Bradlyn, **JC**, et al., *Nature* 547, 298–305; **JC** et al., ArXiv:1709.01935

Elementary band representations are special

Bands in an elementary band representation might be connected or disconnected

If disconnected, some or all bands are topological

Proof by contradiction: if they could decompose into atomic limit bands, then would not have been elementary Bradlyn, JC et al., *Nature* 547, 298–305; JC et al., ArXiv:1709.01935

Completes research program by Zak and Michel from 1999, 2000, 2001

Real space: orbitals and symmetries

Momentum space: k.p Irreps/degeneracies uniquely determined

Only based on symmetry — haven't inputted energetics!

So far, we have only used symmetry, not energetics

Energy ordering can change band connectivity

Symmetry enforced semi-metal

Topological insulator

Want to determine **connectivity** for each set of atomic limit bands

"Little group" of $\mathbf{k}_{0:}$ $\mathcal{G}\mathbf{k}_0 = \mathbf{k}_0$

Eigenstates transform under little group irreps

Irreps at k₀ determine irreps along lines emanating from k₀

$$\begin{array}{c} \Delta_1 \to \ell_1 \\ \Delta_2 \to \ell_1 \oplus \ell_2 \\ \Delta_3 \to \ell_2 \end{array} \right\}$$

Compatibility relations between points and lines

Compatibility relations determine connectivity between different k

Allowed band structures:

- Compatibility between points and lines
- One label per line segment

Enumerating all possible band connectivities is a huge problem!

230 space groups

Each space group has several (1 to 4) maximal Wyckoff positions

Symmetry group of each position has several irreps

For each combination: permute irreps at each point and check compatibility

To enumerate all allowed band connectivities: map to graph theory

Example output: graphene

Algorithm enumerates topological insulators and symmetry-protected semi-metals

We computed connectivity for all 10,000 elementary band representations

How to use this information?

1. List of topological trivial invariants for each space group

2. List of space groups/orbitals that are necessarily topological when insulating at partial filling

Theory of band reps is both a classification and a predictive scheme

Finding new topological materials

EBR theory classifies all known topological insulators

Disconnected elementary band representations

Composite band representations with band inversion

Finite (long!) list; cross-reference ICSD Expedite search by: 1. orbitals at E_F 2. electron counting

Symmetry-protected semi-metals: search within connected EBRs

Μ

Y

Г

Y

М

Г

Topological insulators and semi-metals in SG 64 (buckled honeycomb layers)

Strained PbO₂

Semi-metal; topological bands -3.5eV

Uniaxial strain opens topological gap near E_F

ArXiv:1703.02050, 1706.08529, 1706.09272, 1709.01935, 1709.01937

Summary

Group theory

Graph theory

We computed all elementary (trivial) band representations and their connectivities = classifies all TCI phases

Chemistry

Cross-referencing the list of disconnected(connected) elementary band reps against material databases yields topological insulators(semimetals)

How to detect topological phases that do not have surface states?

Can we apply to many-body systems? How does the classification change with interactions?